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LETI'ER TO THE EDITOR 

Roughening at wetting: step free energy 
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t Department of Physics, Clarkson University, Potsdam, NY 13676, USA 
$ Institute of Physics, PO Box 57, 11001 Beograd, Yugoslavia 

Received 26 June 1989 

Abstract. Build-up of roughening fluctuations in an interface at the wetting (unbinding) 
transition can be measured by the free energy of a step-like formation due to a stepped 
substrate. For the 2D solid-on-solid model of line interface unbinding, exact calculations 
are presented. It is found that the step free energy vanishes linearly as the wetting transition 
is approached, as opposed to the well known quadratic vanishing of the interfacial binding 
energy (per unit length). Step-step interaction free energy is also calculated, for large step 
separation. 

The geometrical features of an interface, such as roughness and step formation [ 1-41, 
are important for understanding a variety of interfacial phenomena (e.g. equilibrium 
crystal shapes). A distinction between rough and smooth interfaces can be made by 
considering the excess step free energy, f,, the vanishing of which indicates the 
interfacial roughness. 

It has been well established (e.g. [ 5 ] )  that fluctuating (unbound) interfaces in 
two-dimensional Ising-type systems are rough for all temperatures 0 < T < T,, i.e. f s  = 0 
for such interfaces. An interface with a step, which is at the same time bound to a 
substrate due to substrate interactions, will have f s  > 0. Consequently, the step free 
energy of a bound interface should vanish as the unbinding (wetting) transition is 
approached. Abraham and Newman [6] recently considered the three-dimensional 
model of wetting with a simultaneous wetting-roughening transition. In their model 
the two-dimensional interface delocalises and becomes rough at the same temperature 

In this work we investigate the behaviour of the step free energy near the wetting 
transition by exact calculation for the lattice solid-on-solid ( S O S )  interface model in 
ZD [8-111. (In a related work, in a different physical context, Levi and Tosatti [12] 
used mean-field theory to analyse the formation and roughening for steps on solid- 
liquid interfaces. A related Monte Carlo calculation has also been performed [ 131.) 
A step-like formation in the interface can be introduced, e.g. by the appropriate choice 
of boundary conditions which pin the interface ends at different heights [8, 14-16]. 
However, for interfaces near walls, this is not the most convenient method since too 
many geometrical features are involved. Instead, we consider an interface attracted 
to a stepped substrate by a short-range potential. For low enough temperatures such 
an interface is bound to the substrate, and its shape follows that of the stepped substrate. 

Consider a square lattice of king spins below the critical temperature T,, with 
boundary spins fixed to have an interface separating the predominantly + from 
predominantly - regions. The boundary has a step of one lattice spacing, as shown 
in figure l (a ) .  Within the SOS model description of the interface [8,14], the interfacial 

[6,71. 
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Figure 1. Single- and two-step substrates. 

energy is given by 

H / k J = C  [Uln, - ny-11 + ( U -  Wbl , ) I .  
Y 

I 

Here U > 0 represents the surface tension contribution while the 'contact' pinning 
potential W > 0 describes the short-range substrate attraction. Note that the connection 
between the full Ising model and the SOS model specified by (1) can be established at 
low temperatures if we take U = 2 K  and W = 2(1- a ) K ,  where K is the nearest- 
neighbour coupling constant and a = ( U - W ) /  U is the parameter (0 < a < 1) which 
specifies the modified substrate interactions. The integer distances nY = 
1,2,3, . . . measure the displacements of the interface from the substrate. In what 
follows we will consider the restricted SOS model where I nY - nY-,l = 0, 1. It is convenient 
to introduce the notation 0 < U = exp(- U )  < 1 and w = exp( W )  > 1. The thermo- 
dynamic behaviour of this model is obtained in the usual manner [14] from the 
symmetric transfer matrix T with elements 

w(sl"+s1,J2( s,,,,-,, + 6,,1n-m(). ( 2 )  T = Uln-ml 
nm 

The method of solution of the eigenproblem for this matrix is well known. We first 
recall briefly the solution in the case of a flat substrate (no steps) [14]. 

The transfer matrix eigenvector for the discrete spectrum has the form g, a y" and 
corresponds to the largest eigenvalue A I  = 1 + U( y + 1/ y ) .  Introducing the notation 
l / u  = l /uc -  w t / ( w  - l), with uc= ( w  - 1)/(2- w ) ,  the eigenvalues can be expressed in 
the form A = 1 +2u+2us.  It turns out that t measures the displacement from the 
wetting transition point. Indeed, the largest eigenvalue is discrete, with .cl( t )  > 0, for 
t < 0. In this notation y = 1 + E --, so that for E > 0 we have y < 1. The largest 
eigenvector is exponentially decaying and describes a 'non-wet' solution, i.e. an inter- 
face pinned to the substrate, with the wetting layer extending the distance &-  
(-In ? ) - I .  This is obtained when U < U,, i.e. t < 0. In addition, there is a continuum 
of delocalised solutions for 1 - 2u s hdelocalised s 1 + 2u representing the 'wet' configur- 
ations. As U + U, (i.e. y + l ) ,  the interface unbinds via a second-order wetting transition. 
For small negative t, when the transition is approached from below, the singular part 
of the free energy behaves as Ling = -( w - 1) t 2 /  w. The parallel and perpendicular 
correlation lengths diverge as ell = wtC2/(  w - l ) ,  t1 = (- f ) - ' ,  as t + 0-. Above the 
wetting transition (for t 0) we have Ling = 0, 51, = 00, and tL = 00. 

For a single step, the step free energy is defined by 

fs = - ln(%/~o)  (3) 
where 2ES is the partition function for the substrate with a single step, while 2Y0 is that 
for the substrate with no step. The 'stepped' problem is solved by the same transfer 
matrix approach. At the step, a special transfer matrix must be considered, and it 
enters only via its matrix elements between the eigenvectors of T corresponding to A , .  
For the single-step free energy we get, after some algebra, 

(4) 
w 

wy2 - y 2  + 1 
U( r2/fi+ y 2  + 1)( 1 - y z )  + + 2uy4 

A I  
fs= -In 
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Figure 2. Variation of the single-step free energyf, with temperature. The coupling constant 
K = - 4  In U is proportional to the inverse temperature. The substrate interactions are 
specified by ( 1 )  a = 0.2,  ( 2 )  a = 0.5 and ( 3 )  a = 0.8; see text. 

The temperature dependence of s, obtained from (4) is shown in figure 2.  As the 
wetting transition is approached from below, we have y +  1 and the step free energy 
vanishes as fs = (1 - 2/&+ 2 /  w f i ) ( - t ) ,  where t + 0-. Above the wetting transition 
f s = O .  Thus, at the transition the step free energy has a kink-like singularity. This 
should be contrasted with the interfacial binding free energy per unit length Ifsing) 
which vanishes - t 2 ,  as t + 0-. 

Using similar methods, the free energy of two steps can be obtained in closed form. 
If the steps are separated by a large distance L, the step-step interaction energy has 
the exponential form -exp( -L/&). This behaviour is valid for large step separations 
L >> til and is controlled by the gap between the leading and next-to-leading transfer 
matrix eigenvalues. It is interesting to note that the results are identical for two-step 
substrates of both types shown in figures l (b )  and l(c).  One can likewise obtain the 
interaction energy for three steps in a closed form. However, both two- and three-step 
results for all separations are expressed in terms of hypergeometric functions and are 
not particularly illuminating. 

In summary, we have analysed the behaviour of the step free energy of an interface 
below and on approach to the wetting (unbinding) transition in 2 ~ .  We found that 
the step free energy vanishes linearly at the wetting transition. 

We wish to thank Professor G Forgacs for helpful discussions. Research by VP and 
NMS has been supported by the US National Science Foundation under grant DMR-86- 
01208. 
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